this post was submitted on 11 Sep 2025
815 points (96.4% liked)
Technology
75041 readers
2912 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related news or articles.
- Be excellent to each other!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, this includes using AI responses and summaries. To ask if your bot can be added please contact a mod.
- Check for duplicates before posting, duplicates may be removed
- Accounts 7 days and younger will have their posts automatically removed.
Approved Bots
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Well, for anyone who knows a bit about how LLMs work, it’s pretty obvious why LLMs struggle with identifying the letters in the words
Well go on..
They don't look at it letter by letter but in tokens, which are automatically generated separately based on occurrence. So while 'z' could be it's own token, 'ne' or even 'the' could be treated as a single token vector. of course, 'e' would still be a separate token when it occurs in isolation. You could even have 'le' and 'let' as separate tokens, afaik. And each token is just a vector of numbers, like 300 or 1000 numbers that represent that token in a vector space. So 'de' and 'e' could be completely different and dissimilar vectors.
so 'delaware' could look to an llm more like de-la-w-are or similar.
of course you could train it to figure out letter counts based on those tokens with a lot of training data, though that could lower performance on other tasks and counting letters just isn't that important, i guess, compared to other stuff
Good read. Thank you